How to run a Logistics system at every Operating hour at the Optimum?

Holistic Approach to Operations Optimising
Holistic Approach to Operations Optimising

Operational Problems
- Complex System Designs
- Continuously changing Operating Conditions
- Operational Control depending on a lot, partly contradictory Parameters

SMART Factory
- Better Use of available Resources!
- Learning System with every Operating hour!
- Fast Adjustment to new ambience Conditions!
Holistic Approach to Operations Optimising

Operational Problems
- Complex System Designs
- Continuously changing Operating Conditions
- Operational Control depending on a lot, partly contradictory Parameters

SMART Factory
- Better Use of available Resources!
- Learning System with every Operating hour!
- Fast Adjustment to new ambience Conditions!

Personnel

Machine

Goods

Environment
Holistic Approach to Operations Optimising

Modules of the application

Module 1: Foresightful Operations Planning
- Short, medium, and long-term Operations Scheduling with holistic optimum over all involved components and resources (Personnel, Machine, Goods, Environment)

Module 2: Online Optimisation of available Resources
- Especially at ongoing changes the detection and fast remedy of bottlenecks (resp. over capacities) is very demanding – system performance optimisation with BCS

Module 3: Continuous Improvement
- With the help of active, system guided learning at every operating hour the experience will be transferred into Know-How – automated adjustment of system model
Holistic optimised Operating Plan will be calculated based on selected strategies (highest throughput, most economical resources usage, etc.) – derived from system model (+ configured conditions and references) using costs and performances.

Module 1: Operations Planning
Module 1: Operations Planning
Module 2: Online Optimisation

Cockpit Details

<table>
<thead>
<tr>
<th>Status</th>
<th>Zeit</th>
<th>Performance day until now</th>
<th>Performance day open</th>
<th>Shift performance until now</th>
<th>Shift performance open</th>
<th>Expected shift end time</th>
<th>Average shift throughput</th>
<th>Performance average last hour</th>
<th>Performance average last 15 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔️</td>
<td>18:28</td>
<td>7.140 K</td>
<td>13.038 K</td>
<td>3.122 K</td>
<td>0.178 K</td>
<td>1D 06 2021:15</td>
<td>807 Kh</td>
<td>691 Kh</td>
<td>880 Kh</td>
</tr>
</tbody>
</table>

Process steps

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>KOF</td>
<td>18:00-19:00</td>
<td>1.760</td>
<td>691 ▲</td>
<td>13.200</td>
<td>8</td>
<td>4</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAF</td>
<td>18:00-19:00</td>
<td>240</td>
<td>0 ▲</td>
<td>240</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLF</td>
<td>18:00-19:00</td>
<td>180</td>
<td>0 ▲</td>
<td>180</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REF</td>
<td>18:00-19:00</td>
<td>80</td>
<td>0 ▲</td>
<td>80</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVF</td>
<td>18:00-19:00</td>
<td>40</td>
<td>59</td>
<td>72</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Production performance

![Graph showing production performance over time]
Module 3: Continuous Improvement
Seamless integration into existing environment
Immediate assessable, commercial Benefits

- Minimised Personnel and System efforts due to holistic Operations Scheduling of all resources
- Increased Average Performance, because of online Bottleneck and Excess capacity detection
- Transparent Competence Management leads to higher Operator performance and satisfaction
- Data based Foundation for best-practice approaches

Don’t regret costs afterwards, actively manage them beforehand